Завдання
Спростити вираз $$\frac{\sqrt[8]{16a^5b^7}+2\sqrt[8]{ab^3}}{\sqrt{2ab}}.$$
Рішення
Скористаємося зв’язком між коренями та ступенями, перейдемо до ступенів
$$\frac{\sqrt[8]{16a^5b^7}+2\sqrt[8]{ab^3}}{\sqrt{2ab}}=\frac{2^{\frac{4}{8}}a^{\frac{5}{8}}b^{\frac{7}{8}}+2a^{\frac{1}{8}}b^{\frac{3}{8}}}{2^{\frac{1}{2}}a^{\frac{1}{2}}b^{\frac{1}{2}}}=$$
Винесемо спільні множники за дужки
$$=\frac{2^{\frac{4}{8}}a^{\frac{5}{8}}b^{\frac{7}{8}}+2a^{\frac{1}{8}}b^{\frac{3}{8}}}{2^{\frac{1}{2}}a^{\frac{1}{2}}b^{\frac{1}{2}}}=\frac{2^{\frac{1}{2}}a^{\frac{1}{8}}b^{\frac{3}{8}}\left (a^{\frac{1}{2}}b^{\frac{1}{2}}+2^{\frac{1}{2}} \right )}{2^{\frac{1}{2}}a^{\frac{1}{2}}b^{\frac{1}{2}}}=$$
Скористаємося властивостями ступенів і скоротимо дріб
$$=\frac{a^{\frac{1}{2}}b^{\frac{1}{2}}+2^{\frac{1}{2}}}{a^{\frac{3}{8}}b^{\frac{1}{8}}}=$$
Повернемося до коренів
$$=\frac{\sqrt{ab}+\sqrt{2}}{\sqrt[8]{a^3b}}$$
Відповідь: $$\frac{\sqrt{ab}+\sqrt{2}}{\sqrt[8]{a^3b}}.$$